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The steady, compressible, turbulent boundary-layer flow, with heat and mass transfer, over a wedge, is
numerically studied. The fluid is considered to be a Newtonian ideal gas (air) and it is subject to a con-
stant velocity of suction/injection applied globally or locally to the wedge.

The Reynolds-Averaged Boundary-Layer (RABL) equations and their boundary conditions are trans-
formed using the compressible Falkner–Skan transformation. The resulting coupled and nonlinear system
of PDEs is solved using the Keller-box method. For the eddy-kinematic viscosity the Cebeci–Smith and
Baldwin–Lomax turbulent models are employed. For the turbulent Prandtl number the extended model
of Kays–Crawford is used.

Numerical calculations are carried out for the case of an adiabatic, cooled or heated wall and for differ-
ent values of the parameters of the problem under consideration. The obtained results show that the flow
field can be controlled by the suction/injection velocity and it is influenced by the dimensionless pressure
parameter m.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

A common area of interest in the field of aerodynamics is the
investigation of compressible two-dimensional steady turbulent
flows. A characteristic flow configuration, which is of fundamental
importance, is that of the flow over a wedge. This type of flow con-
stitutes a general class of problems in fluid mechanics in which the
free stream velocity is proportional to a power of the length coor-
dinate measured from the stagnation point.

The two-dimensional incompressible wedge flow investigated,
for the first time, in 1931 by Falkner and Skan [1] and since then,
it has been studied by many authors. The most recent and repre-
sentative research works, for this type of flow, were presented in
[2–9].

Suction/injection has very often been used as an active aerody-
namic flow control technique to prevent transition from laminar to
turbulent flow as well as turbulent flow separation as far as the
aerodynamics is concerned [10]. The combined influence of local-
ized injection and localized suction retains the boundary-layer
flow, reducing skin friction [11,12]. Many passive and active tech-
niques have been developed for the prevention or delay of flow
separation. Passive techniques are currently employed via blown
flaps on the tip of the aircraft wings or leading edge extensions
ll rights reserved.

ias).
and strakes on the nose of the wings (slats) or via vortex generators
on various points on the wings [13]. Another mean of boundary-
layer control is by heating or cooling the wall [14].

The numerical investigation of the two-dimensional turbulent
boundary-layer compressible flow, with an adverse pressure gradi-
ent and heat and mass transfer, over a finite smooth and permeable
flat surface, was studied in [15]. It was found that the continuous
suction/injection applied on the wall modulates the flow field
and the separation point in adiabatic, heating and cooling flat
plates. The localized suction/injection moves the separation point
downstream, and the local skin friction coefficient is smaller than
in the corresponding case of continuous suction. The effect of suc-
tion/injection is less evident as the free stream Mach number in-
creases. It is also worth mentioning that the boundary-layer over
the heating wall is more sensitive to separation that that of the adi-
abatic and cooling walls.

As far as it could be investigated, the compressible turbulent
boundary-layer flow over a wedge has not been yet studied. Hence,
the aim of this work is the investigation of the classical wedge flow
problem from the aerodynamics point of view. Thus, in the present
study, the compressible turbulent boundary-layer flow over a per-
meable wedge is numerically studied. The effects of localized suc-
tion, applied to the region of the separation point, are also
examined. The boundary-layer flow is considered turbulent and
two turbulent models are employed, those of Cebeci–Smith (C–S)
and Baldwin–Lomax (B–L). From the analysis of the obtained
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results it is concluded that localized suction or injection influences
the flow field and the separation point, rendering the above appli-
cation a flow control technique.

2. Mathematical formulation

The steady, two-dimensional, compressible and turbulent
boundary-layer flow over a permeable wedge is considered. The
wedge is submerged in a heat-conducting perfect and Newtonian
fluid (air), with density q and thermal conductivity k, flowing with
velocity u1 towards the wedge (Fig. 1). The fluid on the wedge is
subjected to suction or blowing through the entire surface or lo-
cally from slots on various locations on the surface of the wedge.
The suction/injection velocity on the wedge surface is tw(x);
whereas the temperature of the surface of the wedge is Tw(x).

Under the above assumptions, the equations governing this
type of flow are the Reynolds-Averaged Boundary-Layer (RABL)
equations, which can be written in the orthogonal system of coor-
dinates shown in Fig. 1, as follows [14,15].

Continuity equation

o
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ð�q�uþ q0u0Þ þ o

oy
ð�q�tþ q0t0Þ ¼ 0; ð1Þ
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Total-enthalpy equation
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It is worth mentioning here that the total enthalpy H for a perfect
gas is defined by the expression:

H ¼ cpT þ 1
2

u2 ð5Þ
Fig. 1. Flow configuration and coo
In the above equations we have replaced the instantaneous ‘‘quan-
tities” f (e.g. u, t, T, q) by the sum of their mean ð�f Þ and fluctuating
parts (f0), that is f ¼ �f þ f 0.

It can be proved, by applying an order-of-magnitude analysis
[14], that density fluctuations are generally small in practice, both
in low-speed flows with high heat transfer and in high-speed adi-
abatic-wall flows. Thus, terms containing q0 can be dropped from
the mass, momentum and enthalpy equations for thin shear layers.
Also, the term q0u0 is negligible compared with �q�u as long as
(c � 1)M2 is not an order of magnitude greater than unity; whereas
the term q0t0 cannot be neglected, compared with �q�t, in the conti-
nuity, momentum and total-enthalpy equations.

On the other hand, the y-momentum Eq. (3) shows that the
pressure variation is governed by the free stream and the term o�p

ox
in the x-momentum equation can be substituted by

� o�p
ox
¼ �d�p

dx
¼ qeue

due

dx
; ð6Þ

where the subscript, e, refers to the conditions at the edge of the
boundary-layer.

Due to the parabolic nature of the above equations, boundary
conditions must be provided on two sides of the solution domain
in addition to the initial conditions at x = x0. So, the boundary con-
ditions of the problem under consideration are

y ¼ 0 : u ¼ 0; t ¼ twðxÞ; H ¼ HwðxÞ ¼ cpTwðxÞ;

y ¼ d : u ¼ ueðxÞ; H ¼ HeðxÞ ¼ TeðxÞ þ
1
2

u2
e ðxÞ:

ð7Þ

In the above boundary conditions (7) d is a distance sufficiently far
away from the wall where the u velocity and the temperature T
reach their free stream values ue(x) and Te(x).

On the other hand, tw(x) is the mass transfer velocity at the wall
and for the case of an impermeable wall tw(x) is equal to zero, for
the case of suction tw(x) < 0; whereas for the case of injection
tw(x) > 0.

In the flow over the wedge the velocity at the edge of the
boundary-layer can be written as in [2]

ue ¼ u1xm; m ¼ b
2� b

P 0; ð8Þ

where u1 is the free stream velocity and b is the Hartree pressure-
gradient parameter that corresponds to b = x/p for a total angle x
of the wedge. Using the abbreviation qt for qtþ �q�t and omitting,
rdinate system for the wedge.
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for simplicity, the over-bars on the basic time-average variables u, t,
q, p and T the equations of the problem can now be written as:
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Defining the eddy-kinematic viscosity em and turbulent Prandtl
number Prt by the expressions
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Prt
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the equations describing the problem can be written as
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whereas the boundary conditions remain unchanged, that is

y ¼ 0 : u ¼ 0; t ¼ twðxÞ; H ¼ HwðxÞ;
y ¼ d : u ¼ ueðxÞ; H ¼ HeðxÞ:

ð16Þ

The above system of Eqs. (13)–(16) is a coupled and nonlinear sys-
tem of partial differential equations (PDEs).

In order to solve the system of PDEs numerically, the compress-
ible version of the Falkner–Skan transformation for a wedge is
introduced, defined by

gðx; yÞ ¼
Z y

0

mþ 1
2

ueðxÞ
meðxÞx

� �1=2 qðx; yÞ
qeðxÞ

dy;

wðx; yÞ ¼ 2
mþ 1

qeleuex
� �1=2

f ðx;gÞ;
ð17Þ

where f(x,y) is the dimensionless stream function. Using the defini-
tion of the stream function w, for a two-dimensional compressible
flow, that satisfies the continuity Eq. (13), with the relations

qu ¼ ow
oy
; qt ¼ � ow

ox
; ð18Þ

and defining the dimensionless total energy ratio S as S = H/He, the
system of the PDEs (13)–(16) finally becomes
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g ¼ ge : f 0 ¼ 1; S ¼ 1;

where ge is the dimensionless thickness of the boundary-layer and
primes denote partial differentiation with respect to g. The quanti-
ties b, C, c, d, e, m1, m2, eþm and Rx are defined as follows:
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The problem under consideration is described by the system of Eqs.
(19) and (20), subjected to the boundary conditions (21); whereas
the coefficients entering into the equations are defined by the
expressions (22).
3. Turbulence models

In this study two algebraic turbulence models, Cebeci-Smith
(C–S) and Baldwin–Lomax (B–L), are used for the calculation of
the eddy–viscosity, em and a model for the turbulent–Prandtl num-
ber, Prt.

The C–S model [14,16,17] is one of the simplest turbulence
models and its accuracy has been explored for a wide range of
experimental data. It is a ‘‘Zero–equation PDE model”, using only
PDEs for the velocity field [18]. It has been used for a wide range
of engineering problems providing accurate results [15,19]. The
C–S turbulent model is a two-layer algebraic eddy viscosity model
where the turbulent boundary-layer is treated as a composite layer
consisting of inner and outer regions with separate expressions for
the eddy-kinematic viscosity in each region. For the inner region
(viscous sublayer) the Prandtl–Van Driest formulation is used while
for the outer region the Clauser formulation is used [14].

Baldwin and Lomax improved the C–S turbulent model avoiding
the necessity for finding the edge of the boundary-layer. B–L is an
algebraic turbulent model that also treats the turbulent boundary-
layer as a composite layer consisting of inner and outer regions. For
the inner region the Prandtl–Van Driest formulation is used. For the
outer region, Baldwin and Lomax introduced a new formulation
according to which the product yMAXFMAX replaces d*ue in the Claus-
er formulation of the C–S model and the combination
yMAXU2

DIF=FMAX replaces dUDIF in the wake formulation [20].
The B–L turbulence model was developed for use in multi-

dimensional Navier–Stokes machine codes [21,22] and the results
from this model are in a good agreement with experimental data.
Many researchers have adopted the B–L algebraic model for its
simplicity, although modifications to its basic form have been em-
ployed [23]. To investigate the mass transfer through the surface of
the wedge, in the B–L model, a formula for the suction/injection
velocity is adopted. In this study the ‘‘damping–length” parameter
A+ is not considered constant, but as a function of the local density
and viscosity values [14]. Finally, for the turbulent–Prandtl number
Prt a modification of the extended Kays and Crawford’s model is
used [12,24].

4. Numerical solution

The numerical scheme used to solve the parabolic system of
PDEs (19)–(22) is a version of the Keller-box method [14–16,25].
The scheme is unconditionally stable, and second-order accuracy
is achieved with arbitrary x and g-spacing [26]. The governing
equations are written as a first-order system and derivatives of
the unknown functions f(x,g), S(x,g) with respect to g are intro-
duced as new functions. Using central-difference derivatives for
the unknown functions at the midpoints of the net rectangle, the
resulting difference equations are implicit and nonlinear. The
box-differencing scheme with Newton linearization is then applied
to the first-order PDEs, giving rise to a block tridiagonal system,
which is solved by the block elimination method [27].
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For the dimensionless total enthalpy ratio Sw, on the surface of
the wedge, three different cases are considered. The case S0w ¼ 0,
describing no heat transfer between the wedge and the fluid (adi-
abatic flow) and the cases Sw > 1 and Sw < 1. For the heating/cooling
of the wedge (wall) the dimensionless heat transfer parameter is
considered Sw > 1, (Sw = 2) and Sw < 1, (Sw = 0.25), respectively. For
determining the specific heat under constant pressure cp, the Pra-
ndtl number Pr and the density q of the fluid (air) for temperatures
varying from 100 to 2500 K, an interpolation formula is used. The
data for the cp, Pr and q were taken from tables [14,28]. The values
of each quantity, for every value of temperature, are calculated by
the successive linear interpolation approach known as Neville’s
algorithm [29].

The developed numerical code was examined for grid indepen-
dency in a previous publication [30]. That study showed that a
computational grid of 801 � 61 is sufficient to provide accurate
numerical results by comparing the separation point, total drag
and the maximum temperature for different grid realizations.
The numerical implementation provides similar results for compu-
tations above 801 � 61 grid points and is not influenced by the in-
crease of the Mach number [30]. However, in this study a grid of
1601 � 81 grid points was used, where 81 points were used on
the g-direction and 1601 on the x-direction. The length (L) of the
wedge was taken for all calculations up to 8 m.

For the numerical solution of the equations describing the prob-
lem the program is divided in two parts. The first is a dynamic link
library (DLL) which contains all the algorithms for the numerical
solution of the problem. The second part is a graphical user inter-
face (GUI), where the user can review or alter the initial data, as, for
instance, the free stream Mach number, the temperature of the
plate and the fluid, the suction/injection velocity, etc. The program
was written in FORTRAN 90 utilizing OpenGL for the visualization of
the data [31].
5. Results and discussion

The results of this study concern dimensionless as well as
dimensional quantities of the compressible turbulent boundary-
layer over the wedge. It is very important to present results on
the dimensionless local skin friction coefficient, Cfx and the local
Stanton number, Stx, for heated and cooled walls, as well as the to-
tal drag D, over the wedge. It is also imperative to present results
for dimensional quantities that will provide information for the
shape of the compressible turbulent boundary-layer under the ad-
verse pressure gradient, e.g. the velocity and temperature fields
throughout the boundary-layer.

Fig. 2a presents the velocity field on the upper wall of a wedge
for m = 0.1, (x = 32.7�) and m = 0.2, (x = 60�). The boundary-layer
is always attached to the plate and never separates from the sur-
face for Mach number M1 = 0.75. The figure also depicts the tem-
perature field over the upper surface of the wedge for adiabatic
wall (Fig. 2b, S0w = 0), heated (Fig. 2c, Sw = 2.0) and cooled wall
(Fig. 2d, Sw = 0.25) for both cases (m = 0.1 and 0.2). The increase
of temperature in the boundary-layer for the adiabatic case is 6.5
degrees for m = 0.1 and 10.3 degrees for m = 0.2. This temperature
increase is due to viscous forces acting on the flow field and the
inclination of the wall. The maximum temperature for the adia-
batic case is 306.5 K for m = 0.1 and 310.3 K for m = 0.2, for the
heated wall is 410.3 K for m = 0.1 and 616.8 K for m = 0.2, and oc-
curs near the heated wall. Finally, the maximum temperature for
the cooled wall is 306.1 K for m = 0.1 and 310.1 K for m = 0.2, and
occurs near the edge of the boundary-layer of the wedge as shown
in Fig. 2d.

The flow over a flat plate at zero incidence, with constant exter-
nal velocity, is known as Blasius flow and corresponds to the
dimensionless pressure gradient m = 0. The dimensionless param-
eter m plays an important role in this type of problem because it
denotes the shape factor of the velocity profiles [2]. It has been
shown that when m < 0 (increasing pressure), the velocity profiles
have a point of inflexion; whereas when m > 0 (decreasing pres-
sure), there is no point of inflexion for the laminar boundary-layer
[16]. In the case under consideration (steady, two-dimensional,
compressible and turbulent boundary-layer flow) the investigation
is limited only for m P 0 and results are presented for these values
of m. In order to quantify the boundary-layer over a wedge, impor-
tant dimensionless quantities, like the dimensionless local skin
friction coefficient Cfx, the local Stanton number Stx and the total
drag D, over the wedge, are presented. Eq. (23), shows the relation-
ship that connects these quantities with the dimensionless shear
parameter on the wall f 00w ¼ f 00ðx;0Þ, the dimensionless heat transfer
parameter S0w ¼ S0ðx;0Þ and the dimensionless total enthalpy ratio
Sw = Hw/He on the wall of the wedge [15,25].

Cfx¼
mþ1

2

� �1=2 2Cwffiffiffiffiffi
Rx
p f 00w; Stx¼

mþ1
2

� �1=2 CwS0w
Pr

ffiffiffiffiffi
Rx
p
ð1�SwÞ

;

ðSw–1Þ;

D¼2
mþ1

2

� �1=2Z x�

0

Cwf 00wðx;0Þffiffiffiffiffiffiffiffi
Rex
p qeðxÞu2

e ðxÞdx

ð23Þ

In the above expression, x* is the distance of the separation point
from the leading edge and Cw = qwlw/qele. Also, the total drag D
is evaluated for both walls of the two-dimensional wedge. Fig. 3
shows the skin friction coefficient Cfx, against the distance x for var-
ious values of the parameter m (m = 0.0,0.2,0.4,0.6,0.8), for
M1 = 0.75 and for the two turbulence models (C–S, B–L) for the case
of an adiabatic wall. For small values of the dimensionless parame-
ter m (m 6 0.6), no separation occurs of the compressible turbulent
boundary-layer over the wedge for the whole length of 8.0m. For
larger values of the dimensionless parameter m (m > 0.6), the model
predicts separation of the turbulent compressible boundary-layer.
Both turbulent models give similar results and as the angle of the
wedge is increased the total drag D, and the skin friction coefficient
Cfx, increase in both C–S and B–L models. In the case that m = 0.8,
the separation of the compressible turbulent boundary-layer occurs
at x* = 3.84m for the C–S and at x* = 4.16m for the B–L turbulence
model.

The same behavior is shown for smaller (M1 = 0.5) or larger
(M1 = 1.25) Mach numbers. The results for the total drag D, for var-
ious Mach numbers M1, for both turbulent models and for
m = 0.0,0.1,0.2 and for an adiabatic wall are summarized in
Table 1.

The results for heated and cooled walls of the wedge are similar
with those of the adiabatic case. Figs. 4 and 5, depict the skin fric-
tion coefficient Cfx, against the distance x, for the cases of cooled
and heated wedge walls, respectively, and for the various values
of the dimensionless pressure parameter m (m = 0.0,0.2,0.4,
0.6,0.8). The figures show that separation occurs only when
m > 0.6 for both turbulence models and for both cases (heated
and cooled walls). For m = 0.8 the separation point for the cooled
wall is at x* = 4.51m for the C–S model and at x* = 4.66m for B–L.
On the other hand, for m = 0.8 and heated, wall the predicted sep-
aration point for the C–S model is at x* = 3.39m and at x* = 3.77m
for the B–L turbulence model. In all cases examined until now,
the total drag D, increases as the dimensional pressure parameter
m increases, and as a first result, can be concluded that the increase
of parameter m, increases the skin friction coefficient Cfx and the
total drag D, over the wedge.

One of the control methods that can retain the turbulent
compressible boundary-layer over the wedge for larger values of
the dimensionless pressure parameter m is the application of



Fig. 2. (a) Velocity field over a wedge for m = 0.1 – left and m = 0.2 – right, (b) temperature field for an adiabatic wall for m = 0.1 – left and m = 0.2 – right, (c) temperature field
for a heated wall for m = 0.1 – left and m = 0.2 – right, (d) temperature field for a cooled wall for m = 0.1 – left and m = 0.2 – right. M1 = 0.75.
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continuous or localized suction/injection. Fig. 6 shows the skin fric-
tion coefficient Cfx, against the distance x, for m = 0.2 and 0.8 with
or without suction/injection and for M1 = 1.25. The application of
suction is continuous at the whole length of the upper wall of
the wedge (tw(x) = �2.0 � 10�4) or localized near the tip of the
wedge (tw(x) = �6.0 � 10�4). The left part of Fig. 6 shows the influ-
ence of localized and continuous suction when m is small (m = 0.2).
The compressible turbulent boundary-layer is retained on the wall
for this case and separation does not occur at the whole length of
the adiabatic plate. The application of continuous suction
increases the total drag but the localized suction has a smaller ef-
fect on D. The right part of Fig. 6, reveals the influence of suction
when m is large (m = 0.8). In this case, the application of continu-
ous suction moves the separation point downstream and retains
the boundary-layer on the adiabatic wall of the wedge. So, at
m = 0.8 with no suction or injection the separation point is at
x* = 4.02m, but after continuous suction the separation occurs at
x* = 4.19m. The localized suction applied at the tip of the wedge



Fig. 3. Skin friction coefficient Cfx, against the distance x, for various values of the parameter m, for M1 = 0.75 and for the case of an adiabatic wall (C–S – left, B–L – right).

Table 1
Total drag D for various Mach numbers M1 and dimensionless pressure parameter m
for an adiabatic wall

C–S model B–L model

M1 = 0.5 m = 0.0 D = 355.25 m = 0.0 D = 362.32
m = 0.1 D = 362.47 m = 0.1 D = 371.58
m = 0.2 D = 363.72 m = 0.2 D = 375.21

M1 = 0.75 m = 0.0 D = 749.52 m = 0.0 D = 767.03
m = 0.1 D = 771.22 m = 0.1 D = 793.61
m = 0.2 D = 780.98 m = 0.2 D = 809.16

M1 = 1.25 m = 0.0 D = 1891.14 m = 0.0 D = 1947.16
m = 0.1 D = 1997.23 m = 0.1 D = 2070.94
m = 0.2 D = 2081.80 m = 0.2 D = 2176.54

M. Xenos et al. / International Journal of Heat and Mass Transfer 52 (2009) 488–496 493
has the same effect as the continuous suction shifting the separa-
tion point downstream at x* = 4.14m. The total drag in the case of
localized suction is smaller than that in the case of continuous,
as shown in Fig. 6.

Similar results are observed in the cases of heated and cooled
wedge walls. These results are illustrated in Figs. 7 and 8, respec-
tively, for two different dimensionless pressure parameters
(m = 0.2 and 0.8). In both cases (heated and cooled wedge walls)
continuous and localized suction increases total drag but in the
case of m = 0.2 they retain the compressible turbulent boundary-
layer and prevent separation. The applied localized suction, near
the tip of the wedge, was tw (x) = �4.0 � 10�4 and the continuous
suction, at the whole length of the upper wall of the wedge, was
tw(x) = �1.5 � 10�4 for the case of a heated wall. On the other
Fig. 4. Skin friction coefficient Cfx against the distance xfor various values of the param
hand, the applied localized suction, near the tip of the wedge,
was tw (x) = �5.0 � 10�4 and the continuous suction, at the whole
length of the upper wall of the wedge, was tw(x) = �2.0 � 10�4 for
the case of a cooled wall. More precisely, in Fig. 7 right, separation
occurs at x* = 3.59m with the application of continuous suction and
at x* = 3.67m with the application of localized, in respect to the ini-
tial case (no suction/injection) that separation occurs at x* = 3.63m.
In Fig. 8 right, separation occurs at x* = 4.56m for continuous suc-
tion and at x* = 4.68m for localized, in respect to the initial case
(no suction/injection) where separation occurs at x* = 4.64m. It is
apparent that the compressible turbulent boundary-layer can be
retained with the application of suction, but the total drug D, in-
creases especially in the case of continuous suction as shown in
the figures.

In Fig. 9, the local Stanton number Stx is presented, for heated
and cooled walls and different values of the dimensionless pres-
sure parameter m (m = 0.0, 0.2, 0.4, 0.6, 0.8), for the C–S turbulence
model. So, at each case (heated and cooled walls) the local Stanton
number Stx, increases as the parameter m increases and this is due
to the friction effects on the wall of the wedge that are more pro-
nounced when the inclination of the wedge increases. Fig. 10, de-
picts the influence of continuous and localized suction on the
local Stanton number. The dimensionless pressure parameter m,
was chosen equal to 0.8 and the turbulence model used for these
simulations is the C–S. The case of m = 0.0 is also presented for
comparison with the cases of m = 0.8 no suction/injection, contin-
uous and localized suction. The continuous as well as the localized
suction increases the local Stanton number Stx, over the wedge in
eter m, for M1 = 0.75 and for the case of a cooling wall (C–S – left, B–L – right).



Fig. 6. Skin friction coefficient Cfx, against the distance x, for various values of the parameter m (m = 0.2 and 0.8), for M1 = 1.25 and for the case of an adiabatic wall and
application of continuous and localized suction (C–S turbulent model).

Fig. 7. Skin friction coefficient Cfx, against the distance x, for various values of the parameter m (m = 0.2 and 0.8), for M1 = 1.25 and for the case of a heated wall and
application of continuous and localized suction (C–S turbulent model).

Fig. 5. Skin friction coefficient Cfx against the distance x for various values of the parameter m, for M1 = 0.75 and for the case of a heated wall (C–S – left, B–L – right).
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both cases of Fig. 10 (heated and cooled walls) and this increase is
more evident in the case of cooled walls.

Finally, in an effort to describe the variation of the total drag
D, with respect to the Mach number M1 = Minf, Fig. 11 presents
the variation of D, against M1, for a small dimensionless pres-
sure parameter m (m = 0.1) and for an adiabatic wedge wall.
The cases of no suction/injection, continuous suction at the
whole length of the wedge (8.0m) and continuous injection
are presented. For the whole range of Mach numbers investi-
gated (M1 = 0.25 until 2.25 Mach) the total drag D, is always
larger in the case of continuous suction as expected. The total
drag is always smaller in the case of continuous injection in re-
spect to the cases of no suction/injection and continuous suc-
tion. So, a combination of localized suction and localized
injection would be the most beneficial tradeoff and is widely
used in our days in all modern airplanes, for drag reduction
and boundary-layer prevention of separation especially during
takeoff and landing.



Fig. 8. Skin friction coefficient Cfx, against the distance x, for various values of the parameter m (m = 0.2 and 0.8), for M1 = 1.25 and for the case of a cooled wall with
application of continuous and localized suction (C–S turbulent model).

Fig. 9. Local Stanton number Stx, for heated – left and cooled – right walls and different values of the dimensionless pressure parameter m (C–S turbulent model).

Fig. 10. Local Stanton number Stx for heated – left and cooled – right walls and different values of the dimensionless pressure parameter m (C–S turbulent model) with
suction/injection.
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6. Conclusions

� A mathematical formulation for the turbulent compressible
boundary-layer flow over a wedge was presented.
� Different values of the dimensionless pressure parameter m
were examined (m = 0.0,0.2,0.4,0.6,0.8). When m increases,
the dimensionless skin friction coefficient Cfx, the local Stanton
number Stx, and the total drag D, increase as shown in the
figures.
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� Small values of m (m 6 0.6), does not lead to boundary-layer
separation in the 8m length of the wedge wall. Though, increas-
ing m (m > 0.6), separation occurs for all cases of adiabatic,
cooled and heated walls of the wedge.

� Application of continuous suction retains the boundary-layer
downstream to the flow but increases total drag. Localized suc-
tion retains the boundary-layer downstream to the flow and is
more desirable due to smaller total drag D, than the continuous
suction case.

� Suction always increases the total drag over the wedge. On the
other hand, injection decreases the total drag over the wedge
and the combination of the localized suction and injection is
important for drag reduction and prevention of boundary-layer
separation.
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